85 research outputs found

    On barrier and modified barrier multigrid methods for 3d topology optimization

    Get PDF
    One of the challenges encountered in optimization of mechanical structures, in particular in what is known as topology optimization, is the size of the problems, which can easily involve millions of variables. A basic example is the minimum compliance formulation of the variable thickness sheet (VTS) problem, which is equivalent to a convex problem. We propose to solve the VTS problem by the Penalty-Barrier Multiplier (PBM) method, introduced by R.\ Polyak and later studied by Ben-Tal and Zibulevsky and others. The most computationally expensive part of the algorithm is the solution of linear systems arising from the Newton method used to minimize a generalized augmented Lagrangian. We use a special structure of the Hessian of this Lagrangian to reduce the size of the linear system and to convert it to a form suitable for a standard multigrid method. This converted system is solved approximately by a multigrid preconditioned MINRES method. The proposed PBM algorithm is compared with the optimality criteria (OC) method and an interior point (IP) method, both using a similar iterative solver setup. We apply all three methods to different loading scenarios. In our experiments, the PBM method clearly outperforms the other methods in terms of computation time required to achieve a certain degree of accuracy

    Constraint interface preconditioning for topology optimization problems

    Get PDF
    The discretization of constrained nonlinear optimization problems arising in the field of topology optimization yields algebraic systems which are challenging to solve in practice, due to pathological ill-conditioning, strong nonlinearity and size. In this work we propose a methodology which brings together existing fast algorithms, namely, interior-point for the optimization problem and a novel substructuring domain decomposition method for the ensuing large-scale linear systems. The main contribution is the choice of interface preconditioner which allows for the acceleration of the domain decomposition method, leading to performance independent of problem size.Comment: To be published in SIAM J. Sci. Com

    A Subgradient Method for Free Material Design

    Get PDF
    A small improvement in the structure of the material could save the manufactory a lot of money. The free material design can be formulated as an optimization problem. However, due to its large scale, second-order methods cannot solve the free material design problem in reasonable size. We formulate the free material optimization (FMO) problem into a saddle-point form in which the inverse of the stiffness matrix A(E) in the constraint is eliminated. The size of A(E) is generally large, denoted as N by N. This is the first formulation of FMO without A(E). We apply the primal-dual subgradient method [17] to solve the restricted saddle-point formula. This is the first gradient-type method for FMO. Each iteration of our algorithm takes a total of O(N2)O(N^2) foating-point operations and an auxiliary vector storage of size O(N), compared with formulations having the inverse of A(E) which requires O(N3)O(N^3) arithmetic operations and an auxiliary vector storage of size O(N2)O(N^2). To solve the problem, we developed a closed-form solution to a semidefinite least squares problem and an efficient parameter update scheme for the gradient method, which are included in the appendix. We also approximate a solution to the bounded Lagrangian dual problem. The problem is decomposed into small problems each only having an unknown of k by k (k = 3 or 6) matrix, and can be solved in parallel. The iteration bound of our algorithm is optimal for general subgradient scheme. Finally we present promising numerical results.Comment: SIAM Journal on Optimization (accepted

    A first-order multigrid method for bound-constrained convex optimization

    Get PDF
    The aim of this paper is to design an efficient multigrid method for constrained convex optimization problems arising from discretization of some underlying infinite dimensional problems. Due to problem dependency of this approach, we only consider bound constraints with (possibly) a single equality constraint. As our aim is to target large-scale problems, we want to avoid computation of second derivatives of the objective function, thus excluding Newton like methods. We propose a smoothing operator that only uses first-order information and study the computational efficiency of the resulting method
    • …
    corecore